Computing and counting longest paths on circular-arc graphs in polynomial time

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing and Counting Longest Paths on Circular-Arc Graphs in Polynomial Time

The longest path problem asks for a path with the largest number of vertices in a given graph. In contrast to the Hamiltonian path problem, until recently polynomial algorithms for the longest path problem were known only for small graph classes, such as trees. Recently, a polynomial algorithm for this problem on interval graphs has been presented in Ioannidou et al. (2011) [19] with running ti...

متن کامل

Computing and Counting the Longest Paths on Circular-Arc Graphs in Polynomial Time

The longest path problem asks for a path with the largest number of vertices in a given graph. In contrast to the Hamiltonian path problem, until recently polynomial algorithms for the longest path problem were known only for small graph classes, such as trees. Recently, a polynomial algorithm for this problem on interval graphs has been presented in [20] with running time O(n) on a graph with ...

متن کامل

Longest Paths in Circular Arc Graphs

We show that all maximum length paths in a connected circular arc graph have non–empty intersection.

متن کامل

A Note on Longest Paths in Circular Arc Graphs

As observed by Rautenbach and Sereni [SIAM J. Discrete Math. 28 (2014) 335–341] there is a gap in the proof of the theorem of Balister et al. [Combin. Probab. Comput. 13 (2004) 311–317], which states that the intersection of all longest paths in a connected circular arc graph is nonempty. In this paper we close this gap.

متن کامل

A note on longest paths in circular arc graph

As observed by Rautenbach and Sereni [SIAM J. Discrete Math. 28 (2014) 335–341] there is a gap in the proof of the theorem of Balister et al. [Combin. Probab. Comput. 13 (2004) 311–317], which states that the intersection of all longest paths in a connected circular arc graph is nonempty. In this paper we close this gap.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2014

ISSN: 0166-218X

DOI: 10.1016/j.dam.2012.08.024